Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/ XY/202504-55%:33 ANNALES UMCS INFORMATICA

DOI: 10.1515/umcsinfo-2015-0001

Heterogeneous Data Integration Architecture-Challenging Integration
Issues

Michal Chromiak!*, Marcin Grabowiecki

! Institute of Computer Science, Maria Curie-Sklodowska University,
pl. M. Curie-Sklodowskiej 5,
20-031 Lublin, Poland

Abstract — As of today, most of the data processing systems have to deal with large amount of data
originated in numerous sources. Data sources almost always differ regarding its purpose of existence. Thus
model, data processing engine and technology differ intensely. Due to current trend for systems fusion there
is a growing demand for data to be present in common way regardless of its legacy. Many systems has been
devised as an answer to such integration needs. However, the present data integration systems mostly are
dedicated solutions that brings constraints and issues when considered in general. In this paper we will focus
on the present solutions for data integration, their flaws originating in their architecture or design concepts and
present an abstract and general approach that could be introduced as an answer to existing issues. The system
integration is considered out of scope for this paper, we will focus particularly on efficient data integration.

Keywords: grid integration model, heterogeneous integration, distributed architecture, data integration, big data,

distributed transaction, warehouse, ETL, OLAP

1 Data Integration Role

Integrating distributed data and service resources is
an ultimate goal of many current technologies, includ-
ing distributed and federated databases, brokers based
on the CORBA standard [1], Sun’s RMI, P2P technolo-
gies, grid technologies, Web Services [2], Sun’s JINT [3],
virtual repositories [4], metacomputing federations [5, 6]
and perhaps others. The distribution of resources has de-
sirable features such as autonomic maintenance and ad-
ministration of local data and services, unlimited scala-
bility due to many servers, avoiding global failures, sup-
porting security and privacy, etc. On the other hand,
there is a need for global processing of distributed re-
sources that treats them as a centralized repository with
resource location and implementation transparency. Such
integration is needed especially when considering domains
(e.g. spatial) with large amounts of data that is required
for further analysis [7] and optimisation [8], but is origi-
nated from many sources. Distributed resources are often
developed independently (with no central management)
thus with the high probability they are heterogeneous,
that is, incompatible concerning, in particular, local data-
base schemas, naming of resource entities, coding of val-
ues and access methods. There are methods to deal with
heterogeneity, in particular, federated databases, brokers
based on the CORBA standard and virtual repositories.
The integrated data context is essential in terms of under-
standing the domain. The more the data is isolated from
colligated data, the less informative it is. In other words,

*mchromiak@umcs.pl

data Integration plays a significant role, as the data puz-
zle is meaningful only while it is considered in particular
context. Therefore the integration is so crucial for mod-
ern systems. Present information systems must deal with
large amount of data. Thus, the big data concepts are
becoming particularly important. The data itself in most
cases is scattered, uses different models or query engines,
is stored in different locations and administered by inde-
pendent administrators. In scope of data integration this
situation is undesirable. At present, despite of many ded-
icated solutions for data integrations (see section 3) or
global caching [9], most of them are not considered gen-
eral enough to provide an abstract layer that could unify
all of the data integration on ground of general solution.

The rest of the paper is organized as follows. We focus
on problems during data integration and common models
that address them in Section 2, existing data integrations
solutions and their issues in Section 3. We also propose
an abstract approach that would solve the issues present
in Section 4. Section 5 concludes.

2 The Models of Integration (Enterprise
Design Patterns)

Integration may continue using multiple techniques
utilizing their each of their particular advantages where
needed. However, it is believed that asynchronous mes-
saging technique plays an increasingly important role
among other styles. Apart from asynchronous messaging,
there are other approaches that solve the same problem,



ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/%Y/202504:55:33

DOI: 10.1515/umcsinfo-2015-0001

each has its distinct advantages and disadvantage. In
general approaches to integration can be considered in
order of evolution:

e shared file - one party writes to a file and other
reads from it. File contact details, format and
access timing must be agreed between parties
using it.

e shared database - one database is a data source
and store for many applications

e Remote Method Invocation - one party exposes
to the world its interface to inner procedures
that can be later executed form outside of this
party. The communication is real-time and syn-
chronous.

e asynchronous messaging - one party publishes
messages! to a common message channel and the
other parties can read those messages at later
time from the channel. However, the channel
and the message format must be agreed.

3 The Collation of Issues With Data
Integration Solutions

Current research in the field of database integration is
focused around detailed areas without general approach
that would be a complete (i.e. independent, extensible by
design) and tested concept. The solutions that we propose
in this paper bring the flexibility and abstraction layer
enabling unrestricted design for networking and schema
customization. The existing research in the domain of
integration of heterogeneous databases has provided a di-
verse array of solutions. The main heterogeneous DB in-
tegration issues that are being answered in this research
field has been briefly classified in the past 1995 in [10] and
[11]. However, some attempts has take place even earlier
in 1983 [12]|. At present, the main area of interest regard-
ing the integration techniques is basing on XML solutions.
It is believed, as mentioned in [13], that the XML has be-
come the indisputable standard both for data exchange
and content management, and moreover that is about to
become the lingua franca of data interchange. This point
of view can be justified by immense number of research
papers, like [14, 15, 16] and many more, trying to uti-
lize the XML technology as the tool for database scheme
and data representation. The XML has also become part
of many commercial products supported by giants of the
software industry like Microsoft [17], Oracle [18] or IBM.

Another aspect of significance of the integration re-
search should be considered in the field of enterprise.

lMessage is data structure - such as a string, a byte array, a
record, or an object. It can be interpreted simply as data, as the
description of a command to be invoked on the receiver, or as the
description of an event that occurred in the sender

Since 1992 [19] the concept of data warehouse has been
proposed, and the database vendors have rushed to imple-
ment the functionalities for constructing data warehouses.
That made on-line analytical processing (OLAP) emerge
as a technology for decision support systems. However,
problems may arise in building a data warehouse with
pre-existing data, since it has various types of heterogene-
ity. This integration scheme for data warehouse however
had to focus on some conflicts, namely value-to-value,
attribute-to-attribute and table-to-table. These conflicts
are not exclusive, they may occur in any pair of relations
at the same time. Such heterogeneity occurs frequently
in two distinct pre-existing databases, when different
databases are designed by different designers or driven
by different assumptions. This conflicts are resolved only
partially or are considered out of scope.

The idea of the presented projects is aimed to solve all
of the issues and prepare monolithic solution. While in
case of published achievements the results can be accessed
and classified freely there is still a considerable amount of
closed, enterprise solutions that are mainly dedicated for
commercial DBMS. In this paper we try to challenge and
solve problems we further elaborate in following sections.
OLAP OLAP is a decision supporting software that
gathers data in multidimensional structures (hyper-
cubes). It also enables the analysis (statistical, sale,
financial, etc.) of collected data. OLAP solutions are
populated with data from heterogeneous sources i.e.
multiple vendor and models (databases, pliki, services,
etc.). Data acquisition and transformation is done by
ETL tools. The design concept of OLAP is to collect
analyzed data fast and effectively. Unfortunately there
is no formally unified query language for OLAP imple-
mentationsl. There are three types of OLAP systems
- ROLAP (relational), MOLAP (multidimensional) and
HOLAP (hybrid). The indisputable advantage of OLAP
is fast analysis of historical data, collected periodically
from data sources and aggregated in form of data storing
structures.

However, it must not be forgotten that data acquisi-
tion and transformation is a tedious and time consuming
process.  This utilize hardware resources intensively
regardless of actual needs of analytical process client.
The fact of often unnecessary data collecting from data
sources bring overhead to networking and contributing
systems when considering big data. Another problem
would be the fact that the OLAP analytical processes
almost always are based on outdated data. This is due
to continuous data changes in contributory systems and
periodical data acquisitions to OLAP. Therefore OLAP
client is reported with historical results. It is not a
problem in all systems but it is a serious flaw when



ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/%Y/202504:55:33

DOI: 10.1515/umcsinfo-2015-0001

considering current data requests.

ETL Modern enterprise solutions, mostly base on ETL
tools. Modern information systems often require input
from multiple data sources (databases, xml files, csv files,
web services, etc.). What is more, the integration of data
brings possibilities of data transformation and analysis.
Therefore, the data needs to be extracted, transformed
and loaded to the destination system which usually is a
data warehouse. ETL (Extract Transform Load) meets
those needs. There are numerous ETL solutions origi-
nating in enterprise’ and open source® vendors, all shar-
ing the same model. The “Extract” phase is challenging
as needs to handle multiple data sources. The databases
themselves are different regarding their model: relational,
object, document, graph, column-oriented, etc. Only re-
lational databases include many SQL dialects and what
is more the NewSQL is coming. Finally, the web applica-
tions can sometimes be also the data source (web spider-
ing). The “Transform” phase modifies the extracted data.
Simple tasks such as selection of specific columns, column
joining, data filtration (selecting data from formula based
ranges), formula based data transformations, aggregation,
table joining, sorting, etc. Some more complicated tasks
are also pivoting or disaggregation of repeating columns
into a separate detail table. At this stage the data types
are processed (eg. data interpretation from string values).
The last phase is data “Load” to data warehouse. Depend-
ing on strategy, new data can be periodically overwritten
or new data is written while providing timestamp of data
aggregation.

The ETL plays a great role for the specific architec-
ture that it represent. However, ETL is not general or
abstract and moreover, has some quite significant issues.
Let us focus on the conceptual problems of ETL. The
fundamental issue with ETL is that the model, where the
data collecting is periodical, what brings the danger that
when the data goes to data warehouse it is already out-
dated or will soon become such. ETL ignores fact that
the data sources keep changing on regular basis. Collect-
ing data takes place only at particular time moments i.e.
once a day, once a week, etc. In result data warehouse
most of the time contains historical data. For applica-
tions where the data can be historical this is not an issue.
However, when the online data processing is required ETL
is unacceptable.

Another architectural concept of ETL is unavoidable
data pulls, regardless whether the data are to be viewed
or analyzed or not. This can generate redundant network
chatter and increase data source systems load, often un-
necessarily. One needs to remember that often data load

20racle Data Integrator, SQL Server Transformation Services,
IBM InforSphere DataStorage
3Talend Open Studio, Pentaho Data Integration

is transactional and therefore reliable and consistent but
also requires large resource request per transaction.

4 Proposed Abstract Integration
Solutions

Answering the need of a general and abstract architec-
ture for data integration, we introduce some of the tech-
niques that we have used to overcome the issues men-
tioned in previous section, while still preserving the key
functionalities of exemplary solutions. The proposed ar-
chitecture depict in the Figure 1 is based on processing
metadata instead of the actual data itself. The architec-
ture brings the following advantages by design:

(1) efficiency - metadata instead of real data

(2) manageable - easy to manage due to only struc-
tures manipulation

(3) traffic optimization - less network connections

(4) reliability - less data to transfer; not relying on
network reliability

(5) optimized - uses only native queries; brings the
most of native data source optimizations

(6) no distributed transactions

Below we discuss the reasons for applying the following
assumptions and justify their usage in the architecture
depicted in Figure 1.

4.1 Solution Proposal for the ETL issues

The ETL issues discussed above can be overcome
thanks to a general architecture particularly design
thanks to its data-less model. The key is to provide
the data that are up to date with the source state. To
achieve this i.e. obtain the data same as the data stored
in data source, we have devised an architecture that
provides not the data itself but the fast access method
for the requested data. The Fast Access Method (FAM)
would be the data source native query, that would pull
the data in the fastest possible way the data source
can provide. Such query would differ across different
models. For instance, in relational model the fastest
method for reaching the data is calling them by their
primary key, in object database it would be the OID
(object ID), etc. Basing on this idea, we utilize a ded-
icated metamodel [20] that is based not on the data
itself but on the complex metadata that also includes the
FAM. The metamodel for representing the integration
patterns is presented in [21] and is out of scope of this
paper, however, it enables the means to obtain a pure
native query (FAM) from a metadata model to pull the
actual data from the data source. Such data are not
only current but are also pulled effectively. For example.
Let us assume the goal of extracting about a billion of



ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/%Y/202504:55:33

DOI: 10.1515/umcsinfo-2015-0001

Complex Request Request
Integrator .
Data Source : Client
Metadata ol e,
Metadata(FAMs) 0 Results

records using not optimized query. This would bring
major latency issues and could even cause system crash,
which is not acceptable. A native query basing on the
best row ID (primary key, object ID, etc.) is the most
effective way to query arbitrary data source. This is due
to the native nature of query. The model utilizing native
query can use all of the optimization techniques that the
data source provide. This is done transparently as the
native optimization methods (i.e. indexing) are managed
by the database engine that processes each native query.
The general architecture actually has no knowledge of
the actual optimization happening at the data source
side. The native query is simply send to the datasource
and the result is the requested data. Such an approach
results in up-to-date and reliable data on demand. This is
particularly important in online applications that require
current data state. The metamodels advantage over the
data model for i.e. ETL, is that it is only metadata about
the data. No data dependent constraints are necessary.
In fact such issues are going to be considered and handled
at the target data source with its best optimization of
native query engine and without any effort at global
integration scale.

4.2 Solution Proposal to OLAP issues

As the OLAP systems are based on ETL populating the
OLAP with source data, the downsides of ETL discussed
above have become also part of OLAP systems. Due to
this inherent drawback from ETL on ground of current
data acquisition, the proposed solution is solving the issue
by delivering up-to-date content that is pulled on demand.

4.3 No distributed transactions

The discussed architecture, due to metadata utilization,
can also store simple updates apart from selecting queries.
However, this requires further elaboration. In case of pro-
posed data integration solution, the data stored at data
sources can be updated with extra records. This brings
us to a point when a data replication in a distributed grid
environment must be handled. Let us assume then, that
the system is going to add one record that needs to be
replicated in three integrated databases controlling the

10

FAM T Results

FiGURE 1. Proposed architecture for the heterogeneous data integration grid

same schema. The integrator sends native updating re-
quest to all three sources. Now, the problem is when one
of the three sources is not able to update its state and thus
cause potential inconsistency in integrated grid. In regu-
lar distributed system, in such condition, one would have
to apply one of the following solutions. First approach is a
distributed two phase commit which means all actions be-
ing a part of the same transaction. This implies tying up
all of the systems in voting process until the unsuccessful
update on failed source is going to be handled or until re-
maining two sources will rollback the distributed update.
Both cases bring major inefficiency forcing entire system
to halt until the problem is resolved. Another, more ad-
vanced solution, would be dividing the distributed trans-
action into distinct transactions but in an asynchronous
queue. This way you can send the database update mes-
sage by enqueuing the update message in one transaction
and forget about it. This is actually not really distributed
due to the fact that close location of the queue broker and
the message sender is required. This means that such so-
lution requires the queue broker and the database to be
collocated, in the same datacenter with fast connectivity
and high availability. The queuing system takes care of
everything by utilizing reliable messaging. The target sys-
tems then processes update message locally in transaction
from the queue. So each dequeue of message and update
to a data source is a separate transaction. Now, in case
when one of the data sources will not make an update
from the queue, there is no way of instantaneous rollback
on remaining sources, that has already accomplished this
task with success. A compensation process is required in
such case. This is done by sending message from the sys-
tem that failed to process the transaction to the remaining
systems, either to rollback or to handle this situation in
other arbitrary way. The big advantage of this solutions
is that transactions happen quickly, asynchronously and
do not tie up entire system over one transaction. On the
other hand it is not really distributed due to collocation
requirement and while intense system load this can bring
major system slow down due to need of compensation
even with fast connectivity.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/ XY/202504-55%:33 ANNALES UMCS INFORMATICA

DOI: 10.1515/umcsinfo-2015-0001

In our solution a transaction is not required. In the [2] http://en.wikipedia.org/wiki/list _of web _service specifications,

exemplary case, when two out of three data sources ac-

2010.

cept the update and the third one does not, we simply [3] }218%;;://wvvw.]lnl.0rg/w1k1/J1n17archltecture7spec1ﬁcat10n,
Change_ thf" metamodel of integrator t‘o store access meth- [4] K. Kuliberda, R. Adamus, J. Wislicki, K. Kaczmarski, T. M.
ods pointing only to the first two parties where the update Kowalski, and K. Subieta. A generic proposal for a transparent
has succeeded. Now, in case of asking integrator for all integration of distributed data by an autonomous layer in a vir-
updated records, only the data sources that has made up- tual repository. an International Journal (MAGS), 3(4):393-
dates with success (i.e. data source one and two) will be 5 307\7\2/0057.13 lewsld. ¢ u 4 et e nterarid
. . . B . DODOlewsKl. omputing and metacomputing intergrid.
made available to pull data. The third data source will be P ) & ne &
) ) . ) roc. 10th International Conference on FEnterprise Informa-
considered only while querying for data that it has man- tion Systems, Barcelona, Spain, 2008.
aged to store until this update message. This can be done [6] M. W. Sobolewski. Federated collaborations with exertions.
due to metamodel presented in [20]. pages 127-132, 2008.
[7] R. Grycuk et al. Content-based image indexing by data cluster-
ing and inverse document frequency. Communications in Com-
. .. . puter and Information Science, pages 374-383, 2014.
4.4  Architecture open to optimization [8] M. Lupa and A Piorkowski. Spatial query optimization based
. . . . on transformation of constraints man-machine interactions.
The key aspect of integration relies on networking. 949. 2014
, .
High availability is clue to integrate resources efficiently. [9] P. Leszczynski and K. Stencel. Update propagator for joint scal-
Considering intensive networking traffic the optimization able storage. Fundam. Inform., 119(3-4), 2012.
of retrieving replicated data is crucial to effective and [10] P. Hepner. Integrating heterogeneous databases: An overview,
responsive communication. Therefore, we have prepared school of congputlng anq mathematics. Deakin University, Gee-
hi f 1 ble load bal . | ith long, Victoria, Australia, 1995.
architecture for replaceable loa alancing algorithms [11] V. D. Gilgor and G. L. Luckenbaugh. Interconnecting heteroge-
[22] covering access to replicated data. The architecture neous database management system. IEEE Comp. Soc. Press,
at the level of integrator is also prepared for applying 17(1), 1983.
optimizations that has already been used for ORM so- [12] S. E. Madnick. A taxonomy for classifying commercial ap-
lutions like Hibernate [23’ 24, 25, 26]. The results of proaches to mformatlo? 1nt§grat10n 1n.heterogeneous environ-
h . d L. . blished i ments. Database Engineering - Special Issues on Database
the mentioned optimization are published 1n separate Connectivity, 13(2), 1999.
paper. In [27] the authors has proven that exemplary [13] V. Rajeswari et al. Heterogeneous database integration for web
optimization technique basing on query rewriting and applications. International Journal on Computer Science and
order dependencies can be applied to arbitrary data Engineering, 1(13):227-234, 2009.
source without need to interfere with the database engine [14] 5. ? Tseng Frank. Heterogeneous database integration using
. . . . . . Xml.
and thus regardless of its origin. This is due t_o effective [15] S. Wei-Jung and H. Minng-Ying. An interactive tool based on
design of the proposed architecture and its flexibility and xml technology for data exchange between heterogeneous erp
agility of appliance. systems. Journal of CIIE, 22(4):273-278, 2005.
[16] P. Rodriguez-Gianolli and J. Mylopoulos. A semantic approach
to xml-based data integration conceptual modeling.
5 Conclusions and Future Work [17] Microsoft TechNet. http://technet.microsoft.com/en-
us/library/ms151835.aspx.
Existing solutions that has been widely used tend to [18] J. ]?asu Nirav Chanchani. Heterogeneous xml-based data inte-
. . . gration.
solve s.pemﬁc er)blems n(.)t even trying ‘.uo generalize due [19] B. Inmon. Building the data warehouse.
to their constrained applications. In this paper we have [20] M. Chromiak and K. Stencel. A data model for heterogeneous
presented the ways that we believe can challenge the prob- data integration architecture. 424, 2014.
lems that the existing solutions do not aim to solve. On [21] M. Chromiak and K. Stencel. The linkup data structure for
ground of an abstract model, that is out of scope for this heterogeneO.us data 1.ntegrat10n plat.form. 7709:263-274, 2012.
aver. our solutions can be combined into fully abstract [22] et al. A. Piorkowski. Load balancing for heterogeneous web
bapet, . y @ servers. 79:189-198, 2010.
and general architecture for heterogeneous data integra- [23] P. Wisniewski and K. Stencel. Query rewriting based on meta-
tion. In future papers we will introduce the entire ar- granular aggregation. pages 457-468, 2013.
chitecture that has been devised to challenge the general [24] M. Gawarkiewicz and P. Wisniewski. Partial aggregation using
problems of data integration in heterogeneous and dis- hibernate. pages 90-99, 2011.
. . [25] A. Boniewicz et al. On materializing paths for faster recursive
tributed environment. .
querying. pages 105-112, 2013.
[26] M. Burzanska et al. Recursive queries using object relational
mapping.
References [27] M.Chromiak et al. Exploiting order dependencies on primary

[1] http://www.omg.org/technology/documents/corba_spec catalog.htm,

2010.

11

keys for optimization. 2014.


http://www.tcpdf.org

