
Annales UMCS Informatica AI X, 2 (2010) 21-28
DOI: 10.2478/v10065-010-0049-1

Parallelizing a new algorithm for the set partition problem

Hoang Chi Thanh1∗

Department of Informatics, Hanoi University of Science, VNUH,
334 - Nguyen Trai Rd., Thanh Xuan, Hanoi, Vietnam.

Abstract – In this paper we propose a new approach to organizing parallel computing to find a
sequence of all solutions to a problem. We split the sequence into subsequences and then execute
concurrently the processes to find these subsequences. We propose a new simple algorithm for
the set partition problem and apply the above technique for this algorithm.

1 Introduction

When solving a computer science problem we have to construct a proper algorithm with
the deterministic input and output. The algorithm is programmed. The input is put into a
computer. The computer performs the corresponding program to hold all the solutions to the
problem after a period of time.

The scheme for computing problem solutions is as presenting in the Fig. 1.

Fig. 1. The scheme for computing problem solutions.

∗thanhhc@vnu.vn

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

22 Parallelizing a new algorithm for the set partition problem

The practical meaning of a problem and an algorithm is better if the time period of
computing is shorter. One of good methods to reduce computing time is to organize parallel
computing where the computation environment allows. There are some methods of organizing
parallel computing to find quickly all solutions of a problem, for example, constructing a
sequential algorithm first and then transforming it into the concurrent one [6], splitting data
into separate blocks and then computing concurrently using the blocks [7]. Such parallel
computing is an illustration of the top-down design.

For many problems, we can get to know quite well a number of all desirable solutions and
their arrangement in a sequence. The set partition problem [2, 3, 5] is a typical example. This
problem is broadly used in the graph theory [1], in the concurrent systems [4]. So we can
split the sequence of all desirable solutions into subsequences and use a common program
(algorithm) in the parallel computing environment to find these subsequences concurrently.
Therefore, the amount of time required for finding all the solutions will be drastically decreased
by the number of subsequences. This computing organization is combination of the bottom-up
as well as divide and conquer designs.

2 Parallel computing of problem solutions by partitioning

To perform the above parallel computing we split the sequence of all desirable solutions
of a problem into subsequences. The number of subsequences depends on the number
of calculating processors. Let us split the sequence of all solutions of the problem into
m subsequences (m ≥ 2). The scheme of the parallel computing organization to find all
solutions of a problem is illustrated in the Fig. 2.

Fig. 2. The scheme of the parallel computing organization to find problem solutions.

In order to make the parallel computing organization realistic and optimal, the subsequences
of solutions should satisfy the two following criteria:

(1) It is easy to determine the input and the termination condition for the computing
process of each subsequence.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

Hoang Chi Thanh 23

(2) The smaller is the difference between the subsequences length the better.

Of course, input 1 is the input of the problem and the last termination condition is that of the
algorithm.

The first criterion ensures that the partition of solutions is realistic. In many cases, we
can use (a part of) the input of the computing process for the next subsequence as the
termination condition of the computing process for the previous subsequence. The second
criterion implements the balance of computing to the processors. Then the parallel computing
processes become optimal.

If the problem has many algorithms, we should choose the algorithm with the least number
of variables. Just then, the input and the termination condition of computing processes of
subsequences become simple.

3 Application to the set partition problem

We apply the above presented technique to the set partition problem. For simplicity of
presentation, we split the sequence of all desirable solutions into two subsequences. If we
want to split the sequence into many subsequences then we apply this technique to each
subsequence.

3.1 Set partition problem

Let X be a given set.

Definition 1. A partition of the set X is a family A1, A2, . . . , Ak of subsets of X , satisfying
the following properties:

(1) Ai �= ∅, 1 ≤ i ≤ k;

(2) Ai ∩Aj = ∅, 1 ≤ i ≤ j ≤ k;

(3) A1 ∪A2 ∪ . . . ∪Ak = X.

Problem: Find all partitions of a given set X .
The set partition problem is broadly used in the graph theory [1], in the concurrent systems

[4]s. The number of all partitions of an n element set is denoted by the Bell number Bn,
calculated by the following recursive formula [3, 5]:

Bn =

n−1∑

i=0

⎛

⎜⎝
n− 1

i

⎞

⎟⎠Bi, where B0 = 1

The number of all solutions of the problem grows up as quickly as the factorial function
does (see Table 1).

Let identify the set X = {1, 2, 3, . . . , n}. Let π = {A1, A2, . . . , Ak}. Each subset Ai

is called a block of the partition π. To ensure the uniqueness of representation, blocks in a
partition are sorted in the ascending order from the smallest element in the block. In a partition,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

24 Parallelizing a new algorithm for the set partition problem

Table 1. The number of the problem solutions.

n Bn

1 1
3 5
5 52
8 4.140

10 115.975
15 1.382.958.545
20 51.724.158.235.372

the block Ai(i = 1, 2, 3, . . .) has the index i and element 1 always belongs to the block A1.
Each element j ∈ X , belonging to a block Ai has also the index i. It means, every element of
X can be represented by the index of a block that includes the element. Of course, the index of
element j is not greater than j. Each partition can be represented by a sequence of n indices.
The sequence can be considered as a word with the length of n on the alphabet X . So we can
sort these words in the ascending order. Then:

• The smallest word is 1 1 1 . . . 1. It corresponds to the partition {1,2,3, . . ., n}. This
partition consists of one block only.

• The largest word is 1 2 3 . . . n. It corresponds to the partition {1}, {2}, {3}, . . ., {n}.
This partition consists of n blocks, each block has only one element. This is an
unique partition that has a block with the index n.

Theorem 1. For every positive integer n,Bn ≤ n!. It means, the number of all n element
set partitions is not larger than the number of all permutations on the same set.

PROOF. It follows from the index sequence representation of partitions. �

We use an integer array AI[1..n] to represent a partition, where AI[i] stores the index of
the block that includes element i. Element 1 always belongs to the first block, element 2 may
belong to the first or second block. If element 2 belongs to the first block then element 3 may
belong to the first or second block only. If element 2 belongs to the second block then element
3 may belong to the first, second or third block. Hence, the element i may only belong to the
blocks:

1, 2, 3, . . . ,max(AI[1], AI[2], . . . , AI[i− 1]) + 1.

It means, for every partition:

AI[i) ≤ max(AI[1], AI[2], . . . , AI[i− 1]) + 1 ≤ i, i = 2, 3, . . . , n.

This is an invariant for all partitions of the set X. We use it to find the partitions.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

Hoang Chi Thanh 25

Example 1. We use it to find the partitions presented in Table 2.

Table 2. Partitions of 3-element set.

No Partition AI[1..3]
1 {1, 2, 3} 1 1 1
2 {1, 2}, {3} 1 1 2
3 {1, 3}, {2} 1 2 1
4 {1}, {2, 3} 1 2 2
5 {1}, {2}, {3} 1 2 3

3.2 A new algorithm for partition generation

It is easy to determine a partition from its index array representation. So, instead of finding
all partitions of the set X we find all index arrays AI[1..n], each of them can represent a partition
of X. These index arrays will be sorted in the ascending order.

The first index array is 1 1 1 . . . 1 and the last index array is 1 2 3 . . . n. So the termination
condition of the algorithm is AI[n] = n .

Let AI[1..n] be an index array representing a partition of X and let AI’[1..n] denote the index
array next to AI in the ascending order.

To find the index array AI’ we use an integer array Max[1..n], where Max[i] stores
max(AI[1], AI[2], . . ., AI[i-1]). The array Max gives us possibilities to increase indices of the
array AI. Of course,

Max[1] = 0 and Max[i] = max(Max[i− 1), AI[i− 1]), i = 2, 3, . . . , n.

Then,

AI′[i] = AI[i], i = 1, 2, . . . , p− 1, where p = min{q|AI[j] = Max[j] + 1, q ≤ j ≤ n},
AI′[p] = AI[p] + 1 and AI′[j] = 1, j = p+ 1, p+ 2, . . . , n.

Based on the above properties of the index arrays, we construct the following algorithm for
finding all partitions of a set.

Algorithm 1. (Generation of set partitions)

Input: A positive integer n.
Output: A sequence of an n element of set partitions, whose index representations are
sorted by ascending.
Computation:

1 Begin
2 AI [1 . . n] ← 1 ;
3 Max [1] ← 0 ;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

26 Parallelizing a new algorithm for the set partition problem

4 P r i n t t h e p a r t i t i o n ;
5 r e p e a t
6 f o r i ← 2 t o n do
7 i f Max [i −1] < AI [i −1] t h e n Max[i] ← AI [i −1]

e l s e Max [i] ← Max [i −1] ;
8 p ← n ;
9 w h i l e AI [p] = Max [p] + 1 do p ← p − 1 ;
10 AI [p] ← AI [p] + 1 ;
11 f o r i ← p + 1 t o n do AI [i] ← 1 ;
12 P r i n t t h e p a r t i t i o n ;
13 u n t i l AI [n] = n ;
14 End .

The algorithm complexity: The algorithm finds an index array and prints the corresponding
partition with the complexity of O(n).

Therefore, the total complexity of the algorithm is O(Bn, n). It approximates O(nn!).
Algorithm 3.2 is much simpler and better than pointer-based algorithm 1.19 presented in [3].

3.3 Parallel generation of partitions

To paralellize the above presented sequential algorithm, we split the sequence of desirable
all partitions of the set X into two subsequences. The pivot is chosen as a partition represented
by the index array:

123...[n/2]− 1[n/2]11 . . . 112

So, the last partition of the first subsequence corresponds to the following index array:

123...[n/2]− 1[n/2]11 . . . 111

The chosen pivot and the last index array of the first subsequence are illustrated in the Fig.
3.

We have to determine the termination condition for the first computing process and the input
of the second one.

The termination condition for the first computing process in instruction 13 is replaced by:

AI[i] = i, i = 2, 3, . . . , [n/2]− 1, [n/2].

The input of the second computing process in instruction 2 will be:

AI[i] ← i, i = 2, 3, . . . , [n/2]− 1, [n/2];

AI[j] ← 1, j = [n/2] + 1, [n/2] + 2, . . . , n− 1;

AI[n] ← 2;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

Hoang Chi Thanh 27

Fig. 3. The pivot and the last index array of the first subsequence.

The experimental results indicate that the pivot is nearly in the middle of the sequence of all
index arrays. So the above splitting is appropriate.

4 Conclusions

In this paper we propose a new approach to organize parallel computing for finding all
solutions of a problem, whose sequential algorithm takes too long to find them. The parallel
computing organization presented above is combination of the bottom-up as well as divide and
conquer designs. We also propose a new efficient and simple algorithm for the set partition
problem and paralellizing the algorithm.

In future, we will apply this technique to other problems, namely time-series processing,
time-series matching, scheduling problem and system control.

5 Acknowledgement

This work was supported by the Asia Research Center, Vietnam National University, Hanoi.

References

[1] Cameron K., Eschen E. M., Chinh T. Hoang, Sritharan R., The list partition problem for
graphs, Proc. of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (New
Orleans, 2004): 391–399.

[2] Cornen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction to Algorithms (The MIT
Press, 2001).

[3] Lipski W., Kombinatoryka dla Programistów (WNT, Warszawa, 1982).
[4] Rajasekaran S., Lee I., Parallel algorithms for relational coarsest partition problems, IEEE

Trans. Parallel Distributed Systems 9(7) (1998): 687–699.
[5] Thanh H. C., Combinatorics (in Vietnamese) (VNUH Press, 1999).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

28 Parallelizing a new algorithm for the set partition problem

[6] Thanh H. C., Transforming sequential processes of a net system into concurrent ones,
International Journal of Knowledge-based and Intelligent Engineering Systems 11(6)
(2007): 391–397.

[7] Thanh H. C., Parallel dimensionality reduction transformation for time-series data,
Proceedings of the 1st Asian Conference on Intelligent Information and Database Systems,
IEEE Computer Society (Dong Hoi, 2009): 104–108.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:46:23

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

