Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

oo, Annales UMCS

% Annales UMCS Informatica Al 4 (2006) 230243 Informatica

‘ao_j o) Lublin-Polonia
e Sectio Al

http://www.annales.umcs.lublin.pl/

Rule extraction from a neural network by hierarchical
multiobjective genetic algorithm

Urszula Markowska-Kaczmar ', Krystyna Mularczyk

Institute of Computer Science, Wroctaw University of Technology,
Wybrzeze S.Wyspianskiego 27, 50-370 Wroctaw, Poland

Abstract

The paper presents a method of rule extraction from the trained neural network by means of a
genetic algorithm. The multiobjective approach is used to suit the nature of the problem, since
different criteria (accuracy, complexity) may be taken into account during the search for a
satisfying solution. The use of a hierarchical algorithm aims at reducing the complexity of the
problem and thus enhancing the method performance. The overall structure and details of the
algorithm as well as the results of experiments performed on popular benchmark data sets are
presented.

1. Introduction

The problem of extracting rules from neural networks consists in finding the
dependency between the network output and the properties of the presented
input vector [1]. It is very important in the medical domain because it increases
the trust of users to the system based on the neural network. The complexity of
this task usually arises from a large number of dimensions of the input vectors.
The usefulness of genetic algorithms results mainly from their ability of
searching vast multidimensional spaces, as well as processing many potential
solutions at a time. Moreover, unlike other methods they treat the network as a
“black box" and concentrate only on the values of inputs and corresponding
outputs, thus becoming architecture independent (e.g. decision trees), genetic
algorithms prove to be more successful when dealing with real values of inputs.
Several techniques, usually for networks whose task is to classify the input
vectors, have already been developed, e.g. in [2,3] however, the multiobjective
nature of the problem of rule extraction is rarely taken into account. A set of
rules describing the functioning of a network may be optimised in several
various ways. First of all, its accuracy may be improved by modifications that

*Corresponding author: e-mail address: urszula.markowska-kaczmar@pwr.wroc.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

Rule extraction from a neural network by hierarchical ... 231

lead to maximizing the number of correctly classified patterns as well as
reducing the number of errors made by the set. Another criterion usually taken
into consideration is the complexity of the set, denoted by the number of rules
and the number of premises in each rule [1], which in, turn may, be considered
separately.

This implies the existence of several criteria of the evaluation of the solutions
that tend to be contradictory. The standard approach in a genetic algorithm is
based on the concept of aggregating functions that enable gathering all the
values of the criteria into a single fitness function, usually in the form of a
weighted sum. However, this method has two main drawbacks. The weights
must be properly adjusted to allow the algorithm to find satisfactory solutions,
which may result in the necessity of running the algorithm many times.
Moreover, whenever the user decides to change the weights in order to
concentrate on one criterion to a greater degree, the process of evolution must be
repeated. This makes the use of classic genetic algorithms rather unwieldy and
time-consuming.

During the process of rule extraction one may wish to take one of different
approaches, depending on the purpose of extraction. One option is an attempt to
obtain a relatively simple set of rules that contains only the most significant
principles governing the functioning of the network, without focusing on
exceptions. Another approach aims at developing a set that describes the
network with the highest fidelity possible. This might lead to discovering
"hidden" knowledge by finding rules that apply to small numbers of input
vectors. Taking this into account, one may say that a perfect solution to the
problem of rule extraction would produce results at a different level of accuracy
and complexity to suit all the needs. This requirement is met by multiobjective
genetic algorithms. Such a method has been proposed in [4] but, since the
algorithm operates on entire sets of rules, its efficiency when dealing with
complex problems is questionable.

2. Pareto optimality in multiobjective problems

In a multiobjective problem several criteria are used to evaluate each solution.
The quality of a given solution cannot be easily expressed in terms of a single
numerical value; hence the problem of comparing solutions and determining
which of them proves to be the most satisfactory. The concept of Pareto
optimality introduces a relation of quasi order on the set of solutions, called
Pareto domination and denofed by the symbol <. For two solutions x and vy,
whose quality is measured by the two vectors consisting of the values of
individual criteria, namely:

F)=[AE) L ()5 £ (5)] O

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

232 Urszula Markowska-Kaczmar, Krystyna Mularczyk

L) =AW Lo(3)seen S (9)])
the relation of domination is defined as follows:

f(x)-<f(y)<:>(Vk=l,...,m) fk(x)ka(y),
A3 fi(¥)<fi (). (3)

It means that a given solution dominates another if it is better with regard to
one criterion and at least equally good if any of the remaining criteria is taken
into account. This implies that in a general case two solutions do not necessarily
have to be bound by this relation, which makes them equally valuable. The
optimisation in the Pareto sense, unlike the optimisation of a function, does not
aim at producing a single satisfactory solution, but at finding an entire set of
non-dominated solutions that would not only lie possibly close to the optimal
values, but would also be distributed evenly in the space of solutions. The
second condition guarantees that all criteria and various combinations of their
relative “importance” are equally taken into account during the process of
optimisation.

3. Basic concepts of the proposed method

The method of rule extraction proposed in the paper, we called MulGEx
(Multiobjectve Genetic Extractor) is based on a genetic approach. It acquires a
set of rules describing the performance of a network used for classification tasks.
Although we concentrate on rule extraction from a neural network, since
MulGEXx treats a network as a black box (a global approach to rule extraction
[1]), it can be used for extracting sets of rules immediately from raw data as
well. The input vector presented to the network may consist of data of various
types (logical, enumerable, real) whereas the only output is an integer
representing the class that a given pattern belongs to. Because of great
complexity of the problem, especially for large numbers of attributes and input
vectors, the algorithm has been divided into two stages, which had been inspired
by [2].

The lower-level genetic algorithm operates on single rules and aims at
maximizing the number of correctly classified patterns without taking the rules’
complexity into account. The upper-level algorithm, on the contrary, respects all
criteria mentioned in the introduction. Its task is to gather the rules evolved by
the first algorithm into one set and refine them through further processing. The
general structure of the algorithm has been shown in Fig. 1. The chromosome on
the lower level represents a single rule consisting of a set of premises followed
by the conclusion, as shown in Fig. 3a. A premise may be active or not,
depending on the value of its flag. More detailed explanation of the purpose of
flags is given in the next subsection. Similarly, a set evolved by the upper-level
algorithm is a sequence of rules that may also be activated or disabled when the

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

Rule extraction from a neural network by hierarchical ... 233

corresponding flag is changed. The chromosome at this stage represents a set of
rules. Its structure is presented in Fig. 3b.

Sets of rules

CITITIITT]

Non-dominated
sets of rules

Upper level GA

Responses of
the network

Lower level GA

Fig. 1. The general structure of MulGEx

3.1. Description of the lower-level algorithm

The lower-level algorithm consists of several independently evolved
populations, each responsible for a different class in the problem of
classification. At this stage an individual represents a single rule in the
form of a set of premises followed by the number of the appropriate class,
as shown in 4.

IF p, AND p,,... AND p, THEN k (4)

Each premise p; corresponds to one element of an input vector presented to
the network (the 7-th input of the network)and denotes the constraint that the
attribute must satisfy before the rule may be applied to the entire vector.
Depending on the type of the attribute, this constraint may take one of the
following forms.

— For logical attributes the constraint determines which of the two possible
values must be taken by the attribute. Therefore the premise consists of a
single Boolean value (Fig. 2a).

— For enumerable attributes the premise is expressed as an array of Boolean
values (V;) with one element per every value in the type. It determines the
subset of values accepted by the constraint (Fig. 2b)

— Discrete and real attributes require defining the range of acceptable values,
which is achieved by specifying its minimum and maximum

— Discrete and real attributes require defining the range of acceptable values,
which is achieved by specifying its minimum and maximum (Fig. 2c¢).

Every rule contains a complete set of premises, i.e. imposes constraints on all
elements of input vectors presented to the network. This prevents from

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

234 Urszula Markowska-Kaczmar, Krystyna Mularczyk

introducing chromosomes with variable lengths and thus facilitates defining the
genetic operators. However, in many cases certain attributes do not influence the
choice of a class during the process of classification, and therefore all their
values could be accepted by a given rule. To achieve this, a Boolean flag is
added to every premise. It determines whether the particular constraint remains
active and is taken into account when the rule is applied to an input vector. By
disabling some of the constraints one may obtain more general rules with lesser
complexity, which is essential during the process of rule extraction.

a) b) c)

A vV AV, VY, Y £| min_jmax
ZLFlag

Fig. 2. Genes for different type of premises, which depending on the type of attribute, a) for

logical, b) for enumerative, c) for real attribute

AL [. [[c]
Flag Premise Conclusion
D)

W T W]
Flag —! [—Rule

Fig. 3. A schema of chromosomes on both levels

The form of the chromosome (rule) requires defining special genetic
operators responsible for crossover and mutation. Uniform crossover has been
used, i.e. the process of exchanging genetic information between two individuals
consists in choosing one of the parents with equal probability for each premise
(gene) copied to the chromosome of the offspring. A premise is duplicated
entirely, including the flag. The only exception occurs in the case of constraints
imposed on real inputs, where each of the values determining the accepted range
(namely the minimum and maximum) may be taken from a different parent. The
conclusion of the rule may be copied from either of the parents, since the
number of the class is identical for all individuals in a given population.

The effect of mutation depends on the type of the gene that it is applied to. In
all cases the flag may be affected, which results in enabling or disabling a given
gene. For the types consisting of Boolean values shown in Fig. 2a and 2b,
mutation may cause changing a randomly chosen value to the opposite one. The

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

Rule extraction from a neural network by hierarchical ... 235

operator of mutation applied to a real value in a premise of the type shown in
Fig. 2c changes it by a random amount (without exceeding the maximal range
defined for the corresponding attribute), on the assumption that small
modifications are more probable. Mutation does not affect the conclusion of a
rule.

In order to compare both approaches (scalar and multiobjective), the value of
the fitness function assigned to an individual in the lower-level algorithm may
be either calculated as a weighed sum of the criteria or based on the relation of
domination (the multiobjective approach). The first step in both cases consists in
determining the number of correctly and incorrectly classified input vectors, i.e.
the coverage and error, respectively. To this end the answer given by the neural
network for each vector is compared to that given by the rule if the constraints
have been satisfied. The weights used for fitness calculation in the first approach
are chosen by the user and the function takes the form presented by Eq. 5.

Fitnessiowe =W, - coverage —W, - error ®)]

If the value of the function happens to be negative, it must be modified, e.g.
by adding a constant value to the fitness of every individual.

In the multiobjective approach, the fitness assignment is based on ranks given
to the individuals. Several techniques may be used here — the most popular were
those proposed by Goldberg in [5] and Fonseca and Fleming in [6]. Both of them
are implemented in MulGEX, the latter with a modification introduced by Zitzler
and Thiele (the SPEA algorithm [7]). The selection of individuals that
participate in the process of reproduction is performed by means of the roulette
wheel method, which implies that the probability of choosing a given individual
for crossover is proportional to its fitness. Goldberg’s algorithm of rank
assignment is as follows:

Temp := Population

n=20
while(Temp # 0)do
{

Nondominated = {xe Temp/(—3 € Temp)(y) < fix)}
(Vx eNondominated)rank(x) := n

Temp := Temp\Nondominated

n:=n-+1

}

Fitness assignment in SPEA is performed according to the following
algorithm:
Let N denote the size of the population

For each individual i in the external set :

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

236 Urszula Markowska-Kaczmar, Krystyna Mularczyk

N
N+q’

i

where n stands for the number of individuals
dominated by i f;€[0,1)

For each individual j in the population :
f./' :Zi,i<j f! +1 ?

i.e.the sum of fitness values of all external
individuals that dominate j increased by on

f;€llLN)

As in this method the lowest fitness values are assigned to the best
individuals, the fitness function must be modified so that it can be used for the
roulette wheel technique.

Since the complexity criterion is not taken into account during the fitness
assignment at this stage, all genes of the individuals in the initial population are
set to the disabled. During the process of evolution the premises are gradually
activated by applying mutation, which allows to keep the complexity at a
relatively low level and introduce only the necessary constraints. The duration of
evolution is determined by the user who may choose either to create a fixed
number of generations or to stop the algorithm when no improvement has been
detected for a given amount of time (measured in generations). When the
algorithm has stopped, the best rule in every population is stored in an external
set and all vectors recognized by this rule are removed from the set that the
algorithm works on. A good idea is to choose the rule with the highest coverage
and noerror, but in some cases this might be impossible or inefficient.
Afterwards a new initial population is created and all steps are repeated. This
phase of rule extraction ends when there are no more vectors corresponding to a
given class in the set, so that no new rules may be evolved. The external set
containing rules stored during the entire course of evolution is passed to the
upper-level algorithm for further processing and optimisation.

3.2. Description of the upper-level algorithm

The upper-level algorithm is used to refine and optimise the rules evolved by
the previous algorithm. This is achieved by gathering them into a single set and
evaluating the efficiency of their cooperation. As a result, superfluous rules may
be eliminated and the remaining ones simplified. Because at this stage a
multiobjective algorithm is used, the evolved sets of rules have different
features; they vary both in accuracy and complexity. The most general structure
of the algorithm resembles the one introduced at the lower level where, an
individual represented a rule consisting of premises that could remain active or

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

Rule extraction from a neural network by hierarchical ... 237

inactive. In this case a chromosome codes a set of rules that may be disabled in
the same way, which excludes them temporarily from participating in
classification. Again, in order to avoid operating on chromosomes with variable
length, each rule is accompanied by a flag determining its status in the set. In the
initial population all individuals are exact copies of the set of rules obtained
from the lower-level algorithm. This implies that the maximal accuracy is
available without the necessity for adding new rules. The only condition that has
to be met is that all genes remain active. Therefore the task of the algorithm is
limited to searching for sets with reduced complexity. However, the
improvement of this criterion should be accompanied by the lowest possible
deterioration of accuracy.

The process of reproduction, just like at the earlier stage, consists in
exchanging genes in a random way between the parents (uniform crossover).
This means that every rule and its flag in a newly created individual are copied
from the parent that has been selected randomly for this purpose. Mutation
occurs on two levels. First of all, a randomly selected flag may be changed,
which results in altering the activation status of the corresponding rule. The
effect is that a potentially superfluous rule is excluded from the set or, in the
oppositecase, a previously removed one is restored. The other type of mutation
affects single premises inside the rules and is performed in the same way as in
the lower-level algorithm, thus leading to the modification of constraints
imposed on the attributes. Since in the previous algorithm some rules were
evolved on the basis of a reduced set of input vectors, at this stage they have a
chance to improve their quality through the use of the entire vector set as a
ground for evaluation, as well as cooperation with other rules.

The upper-level algorit hm is multiobjective and therefore its fitness function
is based on the relation of domination. The entire process of selection, including
the rank-based method of assigning fitness to an individual as well as the
technique of the roulette wheel, is identical to the one used in the lower-level
algorithm. The only difference consists in the choice of criteria for the
evaluation of individuals and the way of calculating their values. The coverage
of a set is determined by the number of input patterns that are correctly classified
by the set as a whole, i.e. by at least one of its active rules. The error, on the
contrary, depends not only on the number of misclassified vectors, but also on
the frequency of a given mistake. In other words, the error is calculated as the
sum of errors for all active rules in the set. On the upper-level another criterion,
namely the complexity of a set, is added. Its value is determined by the number
of active rules in a set increased by the number of active premises in each of
them. This criterion could be split into two, but, apart from complicating the
algorithm, such a distinction would not result in a significant improvement of
performance.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 06/02/2026 08:02:00

238

Urszula Markowska-Kaczmar, Krystyna Mularczyk

The process of evolution stops after evolving a given number of generations
measured either from the beginning or since the last improvement observed (like
in the previous algorithm). However, the definition of improvement in a
multiobjective algorithm is not as straightforward as in classic algorithms, where
the average fitness of the population may be easily compared in the course of
evolution. In this case the quality of an individual is expressed as a vector
consisting of several values. Average values for all criteria in the population may
be calculated, but the comparison of different generations must be based on
domination. In other words, a new generation is recognized as more fit only if
the vector of those average values dominates a corresponding vector calculated
for the previous generation. The output produced by the algorithm is a set of
non-dominated solutions. The choice of the most appropriate one (in a given
situation) is left to the user, who may apply certain weights to the criteria and
obtain the solution with the highest weighed sum of their values. This might be
done repeatedly, which results in presenting solutions with various features
without the need for rerunning the algorithm with different parameters.

4. Experiments

The purpose of performing experiments is to verify whether the proposed
method can be applied to various problems and whether it remains efficient
regardless of the number and types of attributes in a set of input vectors. The use
of popular benchmark data sets gathered in [8] during the tests facilitates
comparing the method with other techniques developed for a similar class of
problems. Table 1 presents the detailed information about the data sets that have
been used for the tests, namely: Iris, LED — 24, Monk — 1 and Quadrupoles.
A 2 % noise has been introduced to the LED — 24 data set.

Table 1. Data sets used for the tests

Name Type of Class No of
(examples) attributes examples
Iris Setosa 50
(150) 3 Versicolour 50

continuous Virginica 50
LED-24 24 binary ~100/
(1000) 2% noise 10 classes class
Monk-1 6 0 216
(432) enumerable 1 216

Separate experiments were carried out directly on the data sets obtained from
the repository [8], without having them processed by a neural network
beforehand. One more data set (Quadrupeds) was added to verify the scalability

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

Rule extraction from a neural network by hierarchical ... 239

of the presented method. The reason is that a network tends to simplify data by
eliminating noise at least partially. This should theoretically lead to reducing the
complexity of rule sets and improving the efficiency of the algorithm, which has
been observed during the tests. Extracting rules from the data processed by a
network resulted in improved efficiency of the method and enhanced accuracy of
the solutions.

The proposed genetic algorithm was tested on the data that had been
processed by a multi-layer feed-forward neural network with one hidden layer,
trained by the back-propagation algorithm. The accuracy achieved by the
network in each case is presented in Table 2.

Table 2. Results of the network training

data Number of neurons | Accuracy

(set) in the hidden layer %

Iris 3 98
LED-24 5 95
Monk-1 3 100

During the tests the lower-level algorithm worked with best effectiveness
with a relatively low probability of crossover, not exceeding 50%, and a low
probability of mutation, up to 1%. The desirable size of a single population
depended strongly on the complexity of the problem, particularly on the number
of attributes, and was usually set to 50 or 100 individuals. Increasing the size of
a population (within reason) resulted in better efficiency of the search. On the
upper level the probability of crossover and mutation was usually the same.
Otherwise the changes in the chromosome became too rapid for the algorithm to
be able to refine the rules through small modifications. At both stages of the
algorithm its efficiency could be enhanced by adding the option of saving the
best individuals in the population. In a multiobjective algorithm this is achieved
by introducing an external population consisting of all non-dominated
individuals found so far during the course of evolution, as described in [7]
(SPEA algorithm). This permits to increase the probability of mutation without
the risk of destroying the best individuals. In all cases the process of evolution
was stopped when no improvement had been observed in the last 100
generations.

An example of rules for /ris evolved by the lower-stage algorithm for the data
processed by the network is shown in Table 3. In this case the first rule in each
class usually covers the majority of input patterns, whereas the remaining rules
supplement it by covering all omitted examples. It is worth noticing that the
number of patterns covered by each rule is calculated on the basis of a reduced
set, after all vectors recognized by the previous rule have been excluded.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

240 Urszula Markowska-Kaczmar, Krystyna Mularczyk

Therefore the actual number of examples covered by some of the rules may be
larger than indicated. In all cases the number of misclassified examples is equal
to zero, which results from the method of choosing the best rule (a very high
weight assigned to error). The number of decimal places within the premises has
been reduced for clarity. Table 4 presents the examples of sets obtained from the
upper-level algorithm on the basis of the previously evolved rules. It is apparent
that the improvement in accuracy is accompanied by increasing complexity of
sets and rules — and vice versa.

Table 3. Rules for Iris evolved by the lower-level algorithm; *) indicates that coverage has been
calculated on the basis of a reduced set of input patterns)

No [Rule Coverage
1. [IF PetalLength € [1.00; 2.90] THEN Setosa 50
5 IF PetalLength € [1.97; 4.98] AND PetalWidth € [0.96; 1.65]

THEN Versicolour 47

IF SepalLenght € [6.19; 7.17] AND SepalWidth € [2.66; 3.32]

3. |AND PetalLength € [1.00; 5.51] AND PetalWidth € [0.88; 1.71]
THEN Versicolour 2
4. [IF PetalWidht € [1.72;2.50] THEN Virginica 46
IF SepalLength € [4.30; 6.12] AND SepalWidth € [2.00;2.75]

5. |AND PetalLength € [4.37; 5.76] AND PetalWidth € [1.37; 2.50]
THEN Virginica 2
6. [IF PetalLenght € [5.33;6.27] THEN Virginica I

Table 4. The two examples of sets of rules for Iris evolved by the upper-level algorithm
(cov — stands for coverage, compl — stands for complexity)

No Rule Cov.|Error|Compl.

IIF PetalLength € [1.00; 2.90] THEN Setosa

I[F PetalLength € [1.97; 4.98] AND PetalWidth € [0.96; 1.65]
THEN Versicolour

IF PetalWidht € [1.72;2.50] THEN Virginica

IIF PetalLength € [1.00; 2.90] THEN Setosa

I[F PetalLength € [1.97; 4.98] AND PetalWidth € [0.96; 1.65]
THEN Versicolour

IIF SepalLenght € [6.19; 7.17] AND PetalWidth € [0.88; 1.71]
THEN Versicolour

I[F PetalWidht € [1.72;2.50] THEN Virginica

I[F SepalWidht e [2.00; 2.62] AND PetalWidht € [1.37;2.50]
THEN Viginica

143 0 7

148 2 13

The general features of rule sets obtained by the method in question for the
chosen benchmark data sets are gathered in Tables 5 and 6 — for the data passed
through a network and for raw data, respectively. The algorithm has been run

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

Rule extraction from a neural network by hierarchical ... 241

five times for every data set and the average values of accuracy corresponding to
particular sizes of rule sets have been calculated. In each case the algorithm
evolved a wide range of sets with various features, including complex sets
classifying correctly all the instances, as well as relatively simple solutions with
a few rules for each category. This proves that the proposed method is suitable
for different types of attributes. Moreover, very good results obtained for
Quadrupeds are the evidence for the method scalability, i.e. the ability of solving
problems with large numbers of attributes.

Table 5. The results of experiments (size — number of rules, acc — accuracy as the difference
between coverage and error) performed on the data processed by a neural network

Iris LED-24 Monk-1
size acc size acc size acc
1 50 1 106 1 72
2 97 5 507 2 144
3 141 10 926 3 216
5 147 15 943 5 360
8 150 20 953 7 432

Table 6. The results of experiments (size— number of rules, acc — accuracy as the difference
between coverage and error) performed on the raw data

Iris LED-24 Monk-1 quadrupeds
size acc size acc size acc size acc
1 50 1 106 1 72 1 144
2 97 5 507 2 144 2 277
3 141 10 926 3 216 3 388
5 147 15 943 5 360 4 497
8 150 20 953 7 432 6 500

The results for Iris, LED-24 and Quadrupeds indicate that a set consisting of
one rule per category may cover most of the instances although some level of
misclassification is possible. Additional rules improve the accuracy in a
relatively low degree. This applies especially to the LED-24 data set, where the
accuracy of 96% and 92% was achieved by a set of 10 rules whereas a set
classifying correctly all input vectors contained 23 rules for the data processed
by the network and over 60 rules for the raw data (not presented in the table).
The observed disproportion is caused by noise that requires very specific rules to
deal with certain examples. A small increase in accuracy observed when new
rules are added to a set indicates that the algorithm starts taking exceptions into
account, which is usually not desirable — unless these specific rules lead to
discovering “hidden” knowledge, i.e. unknown dependencies concerning small
subsets of instances. Therefore the most complex rule sets evolved for Iris,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

242 Urszula Markowska-Kaczmar, Krystyna Mularczyk

LED-24 and Quadrupeds have little value. This observation is possible due to
the multiobjective approach used in the algorithm that allows to develop
different solutions in parallel, thus facilitating their analysis and comparison.
The results produced by the presented algorithm may be confronted with those
obtained for a different multiobjective algorithm (GenPar) described in [2].
Since the same data sets have been used in both cases, it is possible to compare
the effectiveness of the methods. However, this can be done to a certain degree
only because of differences in the way of performing experiments. The most
significant one is that the results presented in [4] and copied to Table 6 contain
information on the number of correctly classified instances only (fidelity),
without providing any data about the error made by a given set. Moreover, no
superfluous attributes had been added to the LED data set.

The results for GenPar, shown in Table 7 prove to be less accurate than those
for MulGEx. It is worth noticing that GenPar did not produce a set with maximal
possible accuracy in any of these cases. This might be caused by the fact that it
operates on entire sets only, which hinders individual rules from being
intensively optimised (the lower-level algorithm in the proposed method is
aimed solely at improving single rules), as well as by combining coverage and
error into one criterion. The presented algorithm, on the contrary, considers them
separately, thus gaining the ability of finding a solution with maximal coverage
which is followed by modifications leading to the reduction of error.

Table 7. The results of experiments for GenPar (size — number of rules, fid —fidelity equivalent
to coverage) on the basis of [4]

Iris LED-24 Quadrupeds
size fid size fid size fid
1 50 1 87 2 182
2 94 4 324 4 471
4 137 5 473 - -
5 144 13 928 - -

5. Conclusions

The results of the performed experiments indicate that the proposed method
shows good effectiveness when extracting rules from various data, with different
numbers and types of attributes. It enables producing a wide range of sets of
rules, varying from those with perfect accuracy achieved at the cost of high
complexity to relatively simple ones that cover only the most typical cases, as
well as dealing with the problem of noisy data. This is obtained by combining a
hierarchical genetic algorithm with a multiobjective approach based on the
concept of Pareto optimality. The method is architecture independent. It can be
used for any classification problem performed by a neural network regardless of

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 08:02:00

Rule extraction from a neural network by hierarchical ... 243

its structure, as long as the responses given by the network for the examined set
of input vectors are known. The main weakness of this method consists in the
necessity of adjusting parameters for both genetic algorithms in order to ensure
the effectiveness of evolution. The optimal values of parameters may be
different for each problem and no technique of their precise estimation has been
developed. Another disadvantage is that the algorithm needs to examine the
entire set of input vectors repeatedly to calculate the values of the criteria for
each individual. Even if an effective data representation is implemented, large
sets cause the deterioration of efficiency. In spite of these drawbacks present in
many GA-based methods of rule extraction, the results produced by the
proposed algorithm may be considered satisfactory.

References

[1] Andrews R., Survey and critique of techniques for extracting rules from trained artificial
neural networks. Knowledge-Based Systems, 8 (1995) 1.

[2] Markowska-Kaczmar U., Zagorski R., Hierarchical evolutionary algorithm in the rule
extraction from neural network. ACM Computing Surveyslnternational Symposium on
Engineering of Intelligent Systems, (2004).

[3] Santos R., Nievola J., Freitas A., Extracting comprehensible rules from neural networks via
genetic algorithms. Symp. on Combinations of Evolutionary Computation and Neural
Network, 1 (2000) 130.

[4] Markowska-Kaczmar U., Wnuk-Lipinski P., Rule extraction from neural network by genetic
algorithm with pareto optimization. In Rutkowski L., ed.: Artificial Intelligence and Soft
Computing. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence,
(2004) 450.

[5] Goldberg D.E., Genetic Algorithms in Search, Optimization and machine. Addison-Wesley
Publishing Company, Reading, Massachusetts, (1989).

[6] Fonseca C.M., Fleming P.J., Genetic algorithms for multiobjective optimization: Formulation,
discussion and generalization. In S. Forrest Ed., Proceedings of the Fifth International
Conference on Genetic Algorithms, (1993) 416.

[7] Zitzler E., Thiele L., Multiobjective evolutionary algorithms: A comparative case study and
strength pareto approach. IEEE Transaction on Evolutionary Computation, 3 (1999) 257.

[8] Blake C.C., Merz C., Uci repository of machine learning databases. University of California,
Irvine, Dept. of Information and Computer Sciences, (1998).

http://www.tcpdf.org

