Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/11/2025 03:01:03

Annales UMCS

RCILTN

o)

% % AnndesUMCS Informatica Al 1 (2003) 73-79 Informatica
RSN Lublin-Polonia
Sectio Al

http://www.annales.umcs.lublin.pl/

Ada as alanguage for programming clusters of SMPs

Przemystaw Stpiczynski’

Department of Computer Science, Maria Curie-Sdodowska University
PI. M. Curie-Skfodowskigj 1, 20-031 Lublin, Poland

Abstract
This paper presents a new idea of developing parallel programs for clusters of SMP nodes us-
ing the Ada programming language. We show how to implement OpenMP in Ada and simplify
programming of distributed memory applications using remote subprograms calls instead of
complicated message passing.

1. Introduction

While the largest computers in the world are still built for the highest
performance, they ill cost tens of millions of dollars. Clusters made high
performance paralel computing available to ingtitutions with much smaller
budgets. Now it is possible to use severa workstations (for example PC's)
connected by Fast Ethernet, Gigabit or Myrinet, as a single powerful
computational resource. The Parallel Virtual Machine (PVM) system helps to
develop paralld programs for such distributed memory architecture [1]. In 1993
Message Passing Interface (MPI) has been developed by researchers from
Argonne National Laboratory and became a defacto standard for message
passing parallel computing. MPI provides a large set of communication
subroutines including point-to-point communication, broadcasting and collective
communication [2].

Often, nodes of such clusters are SMP (symmetric multiprocessing)
machines, which means that their architecture is based on tightly-coupled
identical processors with access to a shared memory. The paralel nature of such
machines is hidden from the user: an operating system is responsible for
alocation of processor time to the programs when scheduling them to run.
Moreover, such a kind of parallel architectures is easy to program. Until quite
recently each vendor has provided its own set of commands to support writing
paralel programs. All these approaches were quite similar with directives for

" E-mail address: przem@hektor.umcs.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/11/2025 03:01:03

managing paralel code execution; e.g. loop parallelizing directives, locks,
barriers and other synchronization primitives inserted into codes written in
Fortran or C. Recently OpenMP [3] emerged as a standard for code
paralelization for shared memory parallel computers.

Unfortunately, people who want to utilize fully clusters of SMPs have to
combine two different standards: OpenMP for shared memory and MPI for
distributed memory, which makes programs complicated. In this paper we show
how to simplify developing programs for the clusters of SMPs using the Ada 95
programming language [4] with the Distributed System Annex [4, 5] and
GLADE[6].

2. Adaand OpenMP

“The language Ada was primarily designed for the production of large
portions of readable, modular, portable, and maintainable software for real-time
applications’ [7], so why not use it for developing parallel programs? The
answer is quite smple. when Ada was being designed [4, 8], the paralld
computing was not popular and this explains why Ada does not provide
constructs which would simplify paralel programming [9, 10]. However, Ada
provides a very powerful mechanism for concurrent programming (tasks and
rendezvous for synchronization) which can also be used for developing
programs for parallel shared memory computers. Unfortunately, the use of tasks
is rather complicated in comparison with simple extensions to Fortran and C
provided by vendors producing parallel computers.

OpenMP provides support for three basic aspects of parallel computing:
specification of parallel execution, communicating between multiple threads,
expressing synchronization between threads. In Fortran, OpenMP directives
satisfy the following format:

| ! $onp directive nane optional clauses |

Such an approach allows to write the same code for both single-processor and
multiprocessor platforms. Simply, compilers which do not support OpenMP
directives or that are working in a single-processor mode treat them as
comments.

Example 1 Let us consider the following code for numerical integration:

P et (%) f(x)06
e O O

b-a
where h:T and x =a+ih, i =0,...,n. An OpenMP code will ook like this:

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/11/2025 03:01:03

h=(b-a)/n
I $onp parallel do private(x) reduction(+:sum
do j=1,n-1
Xx=a+j *h
sumEsumtf (x)
end do
sum=h* (sumt0. 5*(f (a) +f (b)))

In this example the reducti on(+: sun) clause is used. It instructs the
compiler that the variable sumis the target of a sum reduction operation. The
OpenMP uses the fork-join model of parallel execution. A program starts
execution as a single process, caled the master thread of execution, and
executes sequentialy until the first paralel construct is encountered. Then the
master thread spawns a specified number of threads and becomes a “master” of
the team. All statements enclosed by the parallel construct are executed in
paralel by each member of the team.

It is clear that OpenMP standard can be easily adopted to Ada and it should
support the same functionality as OpenMP in Fortran and C. Thus, our proposal
isto use the following format for OpenMP directivesin Ada

| pragma onp; -- directive name optional clauses |

Now let us consider a few examples of OpenMP-Ada constructs. Note that other
“non loop-based” OpenMP constructs like sections and explicit synchronization
can be easily trandated into Ada 95.

Example 2 The par al | el constructs instructs a compiler to create a paralle
region to execute lines between begi n and end in paralld:

pragma onp; -- parallel
begi n
-- lines of code to be executed in parallel

end;

Example 3 The paral | el for congtruct instructs a compiler to parallelize
the execution of a f or loop:

h: =(b-a)/fl oat(n);
pragma onp; -- parallel for private(x) reduction(+:sun
for j in 1..n-1 do | oop

x: =a+float (j)*h;

sum =sum+f (x) ;

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/11/2025 03:01:03

end | oop;

sum =h*(sum+0. 5*(f (a) +f (b)));
Analogously we can adopt all OpenMP constructs. It should be pointed out that
our proposal for OpenMP-Ada (just like official OpenMP for Fortran and C)
defines only a “potential” paralelism. The above examples can be complied
with a standard Ada compiler and it produces no errors. We only get warnings
that the pragma omp is unknown. Now let us observe that each OpenMP-Ada
construct can be trandated into well known pure Ada constructs which support
concurrent programming (just like tasks synchronized by rendezvous).

Example 4 The paralld region construct from Example 2 should be trand ated
into the following code:

decl are
task type onpTl is -- define a local task type
entry Init(nr:in integer); -- which accepts rendezvous
end onpTl;

task body onpTl is -- body of the task
myid : integer;

begi n
accept Init(nr:in integer) do -- get the nunber
nyi d: =nr;
end Init;
-- lines of code to be executed in parallel
end onpTl;

type refonpTl is access onpTyl;
tref : refonpTl;

begi n
for i in 0..AdaCpenMP. NPROCS-1 | oop
tref:=new onpT3l; -- create a new task
tref.all.Init(i); -- give the number to the task
end | oop;
end;

In the above example we define alocal task type and use it to create a number
of tasks (in the for loop). Each task gets its unique number and then starts to
execute the code intended to be executed in parallél. It is clear that the OpenMP-
Ada construct is much simpler.

3. Distributed computing with DSA

As it was mentioned above, if we want to develop programs for clusters we
have a choicee PVM or MPI. Both of the systems are based on the message
passing. They are rather complicated and cannot be used together with Ada. On

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/11/2025 03:01:03

the other hand, Ada 95 offers much simpler way of writing distributed programs
called remote subprogram calls defined in the Distributed System Annex (DSA)
which is a part of the language definition [4]. A typica distributed application in
Ada consists of severa partitions executed on remote hosts. Each partition
comprises a number of Ada packages categorized with simple Ada constructs.
Such packages define “services’ provided by remote hosts [5, 6]. From a
programmer's point of view, cals to “remote subprograms’ are quite similar to
simple subprogram calls. It should be pointed out that DSA provides severa
interesting mechanismsjust like distributed shared memory [6, 11].

Example 5 The categorized package Host_Pkg provides the function
I nt egral . In the evaluation part of the package body one calls the routine
Register from the package Mai n_Pkg} whichisapart of the main partition.

wi th funct;
package Host _Pkg is
pragma Renot e_Types;
type Host _handler is tagged limted private;

type Ref ToHandl er is access all Host _handl er' d ass;
function Integral (h: Host _handl er;a, b:in float;
n: ininteger; f: funct.RefToFunct) return Float;
private

type Host _handler is tagged limted
record
nmyi d: i nt eger;
end record;
end Host _Pkg;

The main partition contains the following package:

wi t h Host _Pkg;
package Mai n_Pkg is
pragma Renmote_Call _I nterface;

procedure Regi ster(h:access Host _Pkg. Ref ToHandl er) ;
......... -- other serveces

end Mai n_Pkg;
Theroutine |l nt egr al can be called asfollows:

wi th Host _Pkg; with Min_Pkg;
procedure Sinple is
begi n

val ue: = Host _Pkg. I ntegral (handler, a, b, n,f);

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/11/2025 03:01:03

end Sinpl e;

In the above example, a distributed application starts with the main partition
which contains the package Mai n_Pkg. Each remote partition “registers’ its
services to the main partition by providing a remote reference to its local data of
the type Host _handl er. When the main partition cals to the routine
I nt egr al , the request is dispatched to the partition which contains handl er,
wheretheroutineis caled. Then the result goes back to the main partition.

Now let us consider the situation when a distributed application consists of
several partitions with the package Host _Pkg}. Thus each partition can be
responsible for computing the integral on a subinterval. Calls to remote copies of
the subprogram | nt egr al should be paralelized. Thus we can simply mix the
proposed OpenMP-Ada with DSA.

Example 6 In this example we show how combine the proposed OpenMP-Ada
with the mechanism of remote subprograms calls.

h: =(b-a)/fl oat (AdaCpenMP. NHOSTS) ;
pragma onp; -- parallel for shared(h)
pragma onp; -- private(xa,xb) reduction(+:sum
for j in 0..AdaQpenMP. NHOSTS-1 do | oop
xa: =a+fl oat (j)*h;
xb: =xa+h;
sum =sumtHost Pkg. I ntegral (handler(j), xa, xb, n, f);
end | oop;

4. Conclusions and futurework

We have presented a new idea of developing parallel programs for clusters of
SMP nodes using the Ada programming language. We have shown how to
implement OpenMP in the pure Ada and simplify programming of distributed
memory application using remote subprogram calls instead of complicated
message passing. As the future work, we are planning to write OpenMP-Ada
compiler using Aflex and Ayacc, which are Ada versions of well known tools lex
and yacc.

References
[1] Dongarra, J., et~a., PVM: A User's Guide and Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, (1994).
[2] Pacheco, P., Parallel Programming with MPI, Morgan Kaufmann, San Francisco, (1996).
[3] Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonad, J., Menon, R., Parallée
Programming in OpenMP, Morgan Kaufmann Publishers, San Francisco, (2001).
[4] Ada 95 Reference Manual, Intermetrics, (1995).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 05/11/2025 03:01:03

[5] Pautet, L., Tardieu, S., What future for the distributed systems annex?, ACM SIGADA Ada
Letters, 19 (1999) 77.

[6] Pautet, L., Tardieu, S., GLADE User's Guide, Free Soft Foundation (2001).

[7] Kok, J., Parallel programming with Ada, Int. J. of Supercomp. Applic., 2 (1988) 100.

[8] Ada Reference Manual, Intermetrics, (1983).

[9] Paprzycki, M., Zalewski, J., Ada in distributed systems: An overview, Ada Letters, 17 (1997)
55.

[10] Paprzycki, M., Zalewski, J., Parallel computing in Ada: An overview and critique, Ada
Letters, 17 (1997) 62.

[11] Kermarrec, Y., Pautet, L., A distributed shared virtual memory for Ada 83 and Ada 9X
applications, In Engle, Jr., C.B., ed.: Proceedings of the Conference on TRI-Ada, Seattle,
WA, USA, ACM Press, (1993) 242.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.tcpdf.org

