

Annales UMCS Informatica AI 1 (2003) 5-13
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Solving linear systems with vectorized WZ factorization

Beata Bylina∗

Departament of Computer Science, Institute of Mathematics, Maria Curie-Skłodowska University

Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract
In the paper we present a vectorized algorithm for WZ factorization of a matrix which was im-

plemented with the BLAS1 library. We present the results of numerical experiments which show
that vectorization accelerates the sequential WZ factorization. Next, we parallelized both algo-
rithms for a two-processor shared memory machine using the OpenMP standard. We present
performances of these four algorithms on a two-Pentium III machine with a Linux system (the
parallelized sequential algorithm is better than the normal sequential one, but the parallelized
vectorized algorithm is very similar in its performance to the non-parallelized vectorized one).

1. Introduction
Solution of the linear systems

 , , n n nAx b A b×= ∈ℜ ∈ℜ (1)
is an important problem in scientific and engineering computations. One of the
methods to solve a dense linear system is its WZ factorization. Matrix A is
factorized to a product of matrices W and Z (which are described in Section 2).
Such a factorization exists for a nonsingular matrix as shown in [1]. In Section 3
we present (according to [2-4]) the idea of solution of the linear systems (1) with
WZ factorization of the matrix and in Section 4 we describe the algorithm of
WZ factorization using the vector notation. We present algorithm for matrices,
which can be factorized without pivoting, that is for symmetric positive definite
and strictly diagonally dominant ones (as proved in [1]). Next, in Section 5, we
describe the results of our experiments for the sequential and vectorized WZ
factorization algorithms. Next, both the algorithms are partially parallelized
(using OpenMP standard) and run on a 2-processor shared-memory machine
with the Linux-based operating system. The results of the experiments are de-
scribed and conclusions are presented in Section 5.

∗ E-mail address: beatas@golem.umcs.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

2. WZ factorization
In this Section we describe the method of a matrix WZ factorization and

solving linear systems (1). WZ factorization is described in [1, 2, 5, 6]. Let’s
assume A is a nonsingular nn × matrix. A=WZ, where the matrices W and Z
consist of following columns iw and rows iz respectively:

{

{

{

{

1, ,

2 , 1,
1

, 1
1

, 1

(0 01 0 0) , 1, , ,

(0 010 0) , , ,

(0 0 10 0) , 1, , ,

(0 0 0 0), 1, , ,

(0 0 0 0), 1, , ,

T
i i i n i i

i

T
i

i

T
i n i i i i

n i

i ii i n i
i

i i n i ii

w w w i m

w i p q

w w w i q n

z z z i p

z z z i p n

+ −

− + −
− +

− +
−

− +

= =

= =

= = +

= =

= = +

K K K K

K K

K K K K

K K K K

K K K K

 (2)

where
      2/)1(,2/)1(,2/)1(+=+=−= nqnpnm .

For example, for n=5 and n=6 we have:
11 12 13 14 15

22 23 2421 25

3331 32 34 35

42 43 4441 45

51 52 53 54 55

21 26

31 32 35 36

41 42 45 46

52 56

1 0 0 0 0
0 01 0 0

, 0 0 0 0 , 5,1
0 00 0 1

0 0 0 0 1

1 0 0 0 0 0
1 0 0 0

1 0
0 1

0 0 0 1
0 0

z z z z z
z z zw w

W Z z nw w w w
z z zw w

z z z z z

w w
w w w w

W
w w w w
w w

  
  
  
  = = =
  
  
     

=

11 12 13 14 15 16

22 23 24 25

33 34

43 44

52 53 54 55

61 62 63 64 65 66

0 0
0 0 0 0

, , 6.
0 0 0 0
0 0

0 0 0 1

z z z z z z
z z z z

z z
Z n

z z
z z z z

z z z z z z

  
  
  
  

= =  
  
  
  

      

After factorization we can solve the two linear systems:

,
,

cZx
bWc

=
=

instead of one (1).

3. Sequential algorithm of the WZ factorization
The WZ method algorithm of solving linear systems consists of two parts:

reduction of the matrix A (and the vector b) to the matrix Z (and the vector c)
and next solving equation Zx=c.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

The first part consists in partial zeroing of columns of the matrix A. In the
first step we zero the elements from the 2nd to n–1st in the first and nth column.
Next we update the matrix A and the vector b. Formally we can write this (after
[5]):

Step 1.1. We compute 1iw and inw from the linear system:





−=−=+
−=+

1,,2for,11

11111

niawawa
awawa

ininnnin

iinni

K

and we get the matrix:























=

−−

10
1

1
01

,11,1

221
)1(

nnn

n

ww

ww
W MOM .

Step 1.2. We compute

 bWbAWA)1()1()1()1(, == .
After the first step we get the linear system)1()1(bxA = where

 ,,
00

00

)1(
1

)1(
1

)1(

1,21

)1(
1,1

)1(
2,1

)1(
1,2

)1(
22

11,11211

)1(























=























=

−

−

−−−

−

−

n

n

nnnnnn

nnn

n

nn

b
b

b
b

b

aaaa
aa

aa
aaaa

A M

L
L

MMMM
L
L

and

.1,,1,

,1,,2,1,,2,

11
)1(

11
)1(

−=++=

−=−=++=

nibwbwbb

ninjawawaa

niniii

njinjiijij

K

KK
 (3)

Similarly, we carry out the second step (and next steps) which consist in the
same operations as before, but only on the submatrices of)1(A obtained by
deleting the first and the last rows and columns of the matrix)1(A .

After m such steps we get the matrix)(mAZ = (as defined in (2)) and the
vector)(mbc = . We get
 ZAWW m =)1()(K
so
 (1) 1 () 1{ } { }mA W W Z WZ− −= =K .

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

The second part of the method is to solve the linear system)(mbZx = . This
part consists in solving a linear system with two unknown quantities xp and xq
and next updating the vector b. Formally we can describe this for the first step:

Step 1.1. We find xp and xq from the system:

()

() .

m
pp p pq q p

m
qp p qq q q

z x z x b

z x z x b

 + =


+ =
 (4)

Step 1.2. We compute:

 .,,1,1,,1,)1(nqpixzxzcc qiqpipii KK +−=−−= (5)
For the odd n equation system (4) consists (in the last step) of one equation.

Similarly, we make the next steps for the inner two-equation systems. There are
m+1 such steps.

In the remainder of our paper we use the name AWZ to denote our sequential
WZ algorithm (described above).

4. Vectorized WZ factorization algorithm
In this Section we present a new WZ factorization algorithm. We describe the

algorithm without pivoting, working only for matrices for which the WZ
factorization is executable. We use the MATLAB notation [7] for describing
algorithm (for matrices of even sizes).

% elimination loop – reduction steps for the matrix A to Z
for k = 0:m-1
 k2 = n-k-1
 det = A(k, k)*A(k2, k2) – A(k2, k)*A(k, k2)
 for i = k+1:k2-1
% computation of coefficients
 wk1 = (A(k2, k)*A(i, k2) – A(k2, k2)*A(i, k))/det
 wk2 = (A(k, k2)*A(i, k) – A(k, k)*A(i, k2))/det
% updating the matrix A
 A(i,k+1:k2-1)
= A(i,k+1:k2-1)+wk1*A(k,k+1:k2-1)+wk2*A(k2,k+1:k2-1)
% updating the vector b
 b(i) = b(i) + wk1*b(k) + wk2*b(k2)
% finding the vector x
for j = m:0
% solving a 2x2 system
 j2 = n – j + 1
 det = A(j, j)*A(j2, j2) – A(j, j2)*A(j2, j)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

 x(j) = (b(j)*A(j2, j2) – b(j2)*A(j, j2))/det
 x(j2) = (b(j2)*A(j, j) – b(j)*A(j2, j))/det
% updating b(1:j–1) ('upper part')
 b(1:j–1)
= b(1:j-1)–x(j)*A(1:j–1,j) – x(j2)* A(1:j-1,j2)
% updating b(n–j+2:n) ('lower part')
 b(n-j+2:n)
= b(n–j+2:n)–x(j)*A(n–j+2:n,j)–x(j2)*A(n–j+2:n,j2)

In our paper we use the name VAWZ to denote the vectorized WZ algorithm.

5. Implementation and numerical experiments

The algorithms AWZ and VAWZ were implemented with the language C [8]
using double precision. The programs were compiled with Intel C Compiler for
Linux (icc) [9], additionally program VAWZ was linked with the library BLAS
(Basic Linear Algebra Subprograms) [10]. BLAS is the collection of
subprograms helping with linear algebra computing. In BLAS we can use real
and complex numbers in single and double precision. We use BLAS1 (Basic
Linear Algebra Subprograms level 1) that contains vector-vector operations. To
implement the algorithm VAWZ we use BLAS1 functions of the type

yxx α+← (_daxpy).
The algorithms were tested on a two-processor (Pentium III 733 MHz)

machine working under the Linux operating system. Both the algorithms were
run for matrices for which WZ factorization is possible. Here are the results.

1. The speed of the algorithm VAWZ is statistically 92% higher than the speed
of the algorithm AWZ. For the matrices of size greater the 1000 VAWZ is 53%
greater than the speed of the algorithm AWZ. The speed decreases with the
growth of the size for both the algorithms but falls more and more slowly to the
certain level. We can view that the speed of the algorithm AWZ stabilizes for the
size of 1300 at about 38 Mflops and the speed of the algorithm VAWZ stabilizes
for the same size at about 65 Mflops. We can see the results in the Figure 1.

Next we parallelized both the algorithms using OpenMP directives. OpenMP
[10] is a standardized set of mechanisms (directives, functions etc.) for creating
parallel programs for shared memory machines. OpenMP is supported by many
producers of such machines/architectures – so is by Intel.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

Speed of AWZ and VAWZ

0

50

100

150

200

250

100 400 700 1000 1300 1600

Size of the matrix

Sp
ee

d
(M

flo
ps

)

AWZ
VAWZ

Fig. 1. Speed of AWZ and VAWZ

Our parallel programs were compiled with Intel C Compiler (icc). A parallel

program compiled that way (with icc using standard OpenMP) starts as a single
thread running as such to the first parallel construction. At that moment the main
thread is forked and different threads are run by different processors.

In our algorithms we parallelized the following elements:
1. In the first part (which computes the matrix Z and the vector c) we update

parallelly rows of the matrix A and elements of the vector b.
2. In the second part (which finds the solution vector x) we update parallelly

upper and lower parts of the vector b.
In the paper we use the name PAWZ to denote the parallelized AWZ and

PVAWZ to denote the parallelized VAWZ.
Both the algorithms were tested for matrices for which WZ factorization is

possible. Here are the results.
2. The speed of the algorithm PAWZ is statistically 50% higher than that of the
algorithm AWZ. For small matrices (100–300) the speed of the algorithm
PAWZ is even about 100% greater than the speed of the algorithm AWZ. The
speed decreases with the growth of the size for both the algorithms to a certain
level. The speed of the algorithm PAWZ stabilizes about 85 Mflops. We present
the results in the Figure 2.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

Speed of AWZ and PAWZ

0
50

100
150
200
250
300

100 400 700 1000 1300 1600

Size of the matrix

Sp
ee

d
(M

flo
ps

)

AWZ
PAWZ

Fig. 2. Speed of AWZ and PAWZ

3. The speed of the algorithm PAWZ is statistically 13% higher than the speed
of the algorithm PVAWZ. For big matrices the algorithm PAWZ is about 20%
faster than PVAWZ. The results are presented in the Figure 3.

Speed of PAWZ and PVAWZ

0
50

100
150
200
250
300

100 400 700 1000 1300 1600

Size of the matrix

Sp
ee

d
(M

flo
ps

)

PAWZ
PVAWZ

Fig. 3. Speed of PAWZ and PVAWZ

4. The speed of the algorithm PVAWZ is the same as the speed of the algorithm
PAWZ. That means that parallelization of VAWZ was without meaning for the
speed. The speed stabilizes about 66 Mflops. The results are presented in the
Figure 4.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

Speed VAWZ and PVAWZ

0

50

100

150

200

250

100 400 700 1000 1300 1600

Size of the matrix

Sp
ee

d
(M

flo
ps

)

PVAWZ
VAWZ

Fig. 4. Speed VAWZ and PVAWZ

From our tests the following inequality (for big matrices) follows:

)PAWZ()PVAWZ()VAWZ()AWZ(spspspsp <≤<
where sp(A) denotes the speed of the algorithm A.

And here are the results of our tests for a matrix of the size 2000

 speed of the algorithm (Mflops)
size of the matrix AWZ PAWZ VAWZ PVAWZ

2000 38,9282 86,02145 65,28 65,2212

6. Conclusion
We described an efficient algorithm for solving linear systems (1) by WZ

factorization. We vectorized (with BLAS1 subroutines) this algorithm. We
showed that VAWZ is better than AWZ. Some elements of AWZ and VAWZ
were parallelized (using OpenMP standard) and we got algorithms PAWZ and
PVAWZ. PAWZ was the most efficient algorithm of the four presented.

References
[1] Chandra Sekhara Rao S., Existence and uniqueness of WZ factorization, Parallel Computing,

23 (1997) 1129.
[2] Evans D.J., Barulli M., BSP linear solver for dense matrices, Parallel Computing, 24 (1998)

777.
[3] Shanehchi J., The determination of sparse eigensystems and parallel linear system solvers,

Ph. D. Thesis, Loughborough University of Technology, (1980).
[4] Anthoine J.L., Chatonnay P., Laiymani D., Nicod J.M., Philippe L., Parrallel Numerical

Computing Using CORBA.
[5] Evans D.J., Hatzopoulos M., The parallel solution of linear system, Int. J. Comp. Math., 7

(1979) 227.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

[6] Yalamov P., Evans D.J., The WZ matrix factorization method, Parallel Computing, 21 (1995)
1111.

[7] Drozdowski P., Wprowadzenie do Matlaba, Politechnika Krakowska im. Tadeusza
Kościuszki, Kraków, (1996), in Polish.

[8] Express C. User’s Guide Version 3.0, ParaSoft Corp., Pasadena Calif., (1990).
[9] Intel(R) C++ Compiler for Linux Release notes, version 6.01.
[10] Donngarra J.J., Whaley R.C.: LAPACK Working Note 94: A User’s Guide to the BLACS

v 1.1; http://www.nwtlib.org/lapack/lawns.
[11] OpenMP C and C++ Application Program Interface, Version 2.0 March (2002).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 07:04:05

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

